

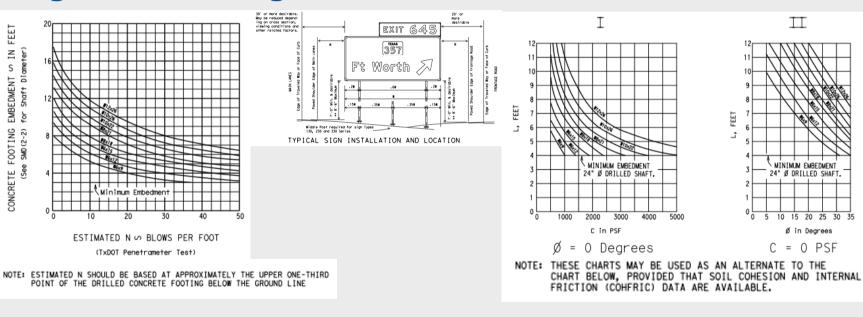
Foundation Design Updates for Ancillary Traffic Structures

Ryan Eaves, P.E.

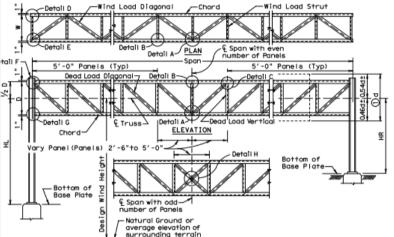
Geotechnical Branch Manager – Bridge Division

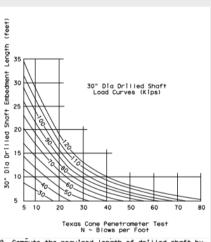
Table of Contents

- 3 | Standard Lists
- 22 | Design Approach
- 25 | Standard Use Examples
- **39** | Updates and Conclusions


Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N_{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

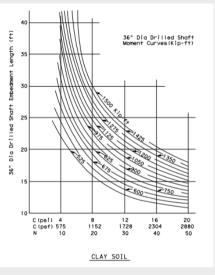

Large Roadside Signs



Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N_{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

Overhead Sign Bridges

 Compute the required length of drilled shaft by adding 3'-0" to the required embedment length.


GENERAL NOTES:

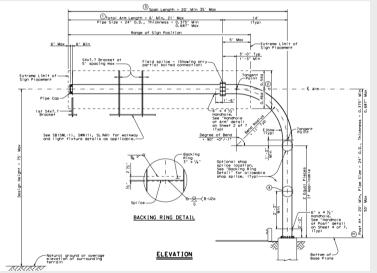
These charts are to be used for Simple Span Overhead Sign Bridges with two shafts per tower. Numbers shown on curved lines are uplift in kip. Dead load of concrete in drilled shafts is included in curves.

Minimum embedment of drilled shafts is two diameters.

diameters.

Load curves shall not be extrapolated below
the N value of 5 blows per foot.

GENERAL NOTES:


Minimum embedment of drilled shofts is two diameters. Add 3'-0" to required embedment length to determine required length of drilled shaft. These graphs are intended for use with Overhead Sign Bridges, with one shaft footing. (Not suitable for cantilever structures).

C = Cohesive shear strength of soil, in psf.

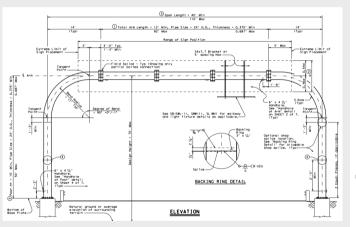
Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N_{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

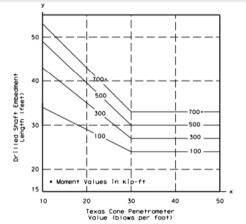
Monotube Sign Structure - Cantilever

TOP	TOP OF DRILLED SHAFT DESIGN LOADS						
	90	MPH W	IND SF	PEED			
Span Length	Post Height	Axial (kips)	Moment (k-ft)	Torsion (k-ft)	Shear (kips)		
	20'	9	138	77	6		
	25'	9	166	77	6		
201	30'	10	195	77	7		
	40'	13	256	77	7		
	50'	19	321	77	7		
	20,	13	189	121	8		
	25'	14	225	121	8		
25'	30'	15	262	121	8		
	40'	18	340	121	9		
	50'	16	418	121	8		

DRI	DRILLED SHAFT EMBEDMENT LENGTHS						
	9	0 MPH	WIND S	PEED			
Span Length	Post Height	TCP 10 bl/ft (ft)	TCP 20 b1/ft (ft)	TCP 30 bl/ft (ft)	TCP 40+b1/ft (ft)		
	20'	35	31	29	27		
1	25'	36	31	29	27		
201	30'	37	31	29	27		
1	40'	38	31	29	27		
	50'	40	31	29	27		
	20'	37	31	29	27		
1	25'	38	31	29	27		
251	30'	39	31	29	27		
	40'	41	31	29	27		
	50'	42	31	29	27		

Determine foundation embedment length based on the blow counts in the upper 20 ft of soil.


Terminate shafts encountering rock with a minimum rock penetration of 13 ft, while maintaining a minimum shaft embedment length of 25 ft.


For Texas Cone Penetrometer (TCP) blow count data that falls between two of the listed values in the tables, it is permissible to use linear interpolation between the two nearest blow count values to determine foundation embedment length.

Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N_{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

Monotube Sign Structure - Span

48" Digmeter Drilled Shaft Load Curves (kip-ft)

Note: The Drilled Shoft Load Curves were developed in terms of applied moment, shear, and torsion. Moment combined with compart considered. While moment is used to represent the design curves in the Drilled Shoft Load Curve plot, shear was also taken into account.

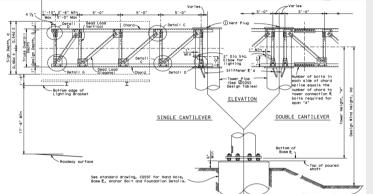
The 700+ curve is valid for designing foundations for load cases with a moment greater than or equal to 700 k-ft.

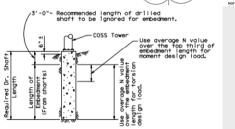
Use the foundation design curves only for the design loading listed on this standard. A custom foundation design is required for soil profiles with blow counts less than 10 bl/ft.

Interpolate moment values that are between two curves.

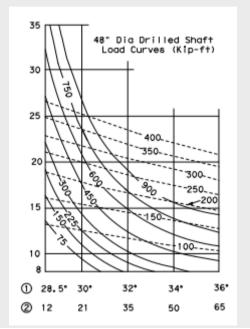
TOP OF DRILLED SHAFT DESIGN LOADS						
	90	MPH W	IND SF	PEED		
Span Length	Post Height	Axial (kips)	Moment (k-ft)	Torsion (k-f+)	Shear (kips)	
	15′	7	119	33	11	
	20'	8	134	27	9	
401	30'	10	189	24	8	
	40'	14	251	22	7	
	50'	20	316	23	8	
	15'	8	150	51	14	
	20'	9	169	44	11	
501	30'	12	237	41	9	
	40'	18	314	44	9	
	50'	13	389	25	9	

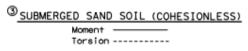
Determine foundation embedment length based on the blow counts in the upper 20 ft of soil.

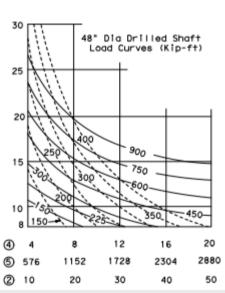

Terminate shafts encountering rock with a minimum rock penetration of 8 ft, while maintaining a minimum shaft embedment length of 20 ft.

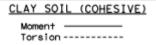


Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

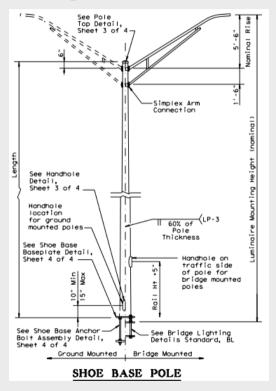



Cantilever Overhead Sign Support





- ① Ø = Angle of internal friction of soil (degrees)
- ② N = Texas cone penetrometer value (blows per ft)
- (4) C(psi) = Cohesive shear strength of soil (psi)
- (5) C(psf) = Cohesive shear strength of soil (psf)

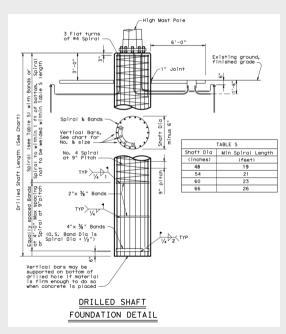


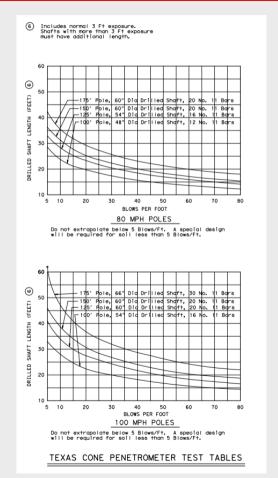
Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N_{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

Roadway Illumination Pole

TABLE 2				
RECOMMENDED FOUNDATION LENGTHS (See note 1)				
MOUNT ING HE I GHT	TEXAS CONE PENETROMETER N Blows/f†			
HE TOHT	10	15	40	
<20 ft.	6′	6'	6′	
>20 ft. to 30 ft.	8, 6, 6,			
>30 ft. to 40 ft.	8	8'	6′	
>40 ft. to 50 ft.	10'	8,	6′	

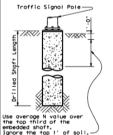
TABLE 3					
PAY QUANTITY OF RIPRAP PER FOUNDATION (Install only when shown on the plans)					
Foundation Diameter	RIPRAP DIAMETER	RIPRAP (CONC) (CL B)			
30 in.	78 in.	0.35 CY			


^{1. &}quot;Recommended Foundation Lengths" table is for information purposes only. Foundation lengths shall be as shown on the plans, or as directed by the Engineer. Foundations will be paid for under Item 416, "Drilled Shaft Foundations," unless otherwise shown on the plans.


Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

High Mast Illumination Pole

Drilled shaft lengths as determined from the foundation design chart or other acceptable methods are to be as shown elsewhere on the plans.

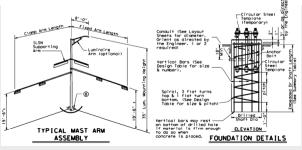

Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N _{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N _{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

Traffic Signal Pole

							FOUND	MOITA	DESI	GN T	ABLE				Г
I	FDN	DRILLED		FORCING TEEL	LENGT	D DRILLE	(5),(6)		HOR BO	LT DES	IGN	FOUNDA DESI	TION IGN ②		1 (
	TYPE	SHAFT	VERT BARS	SPIRAL & PITCH	I 1	ONE PENET blows/f 15	TROMETER 1 40	ANCHOR BOLT DIA	Fy (ksi)	BOLT CIR DIA	ANCHOR TYPE	MOMENT	SHEAR Kips	TYPICAL APPLICATION] ,
	24-A	24"	4-#5	#2 at 12"	5.7	5.3	4.5	¾"	36	12 ¾-	1	10	1	Pedestal pole, pedestal mounted controller.]
ı	30-A	30"	8-#9	#3 at 6"	11.3	10.3	8.0	1 1/2"	55	17"	2	87	3	Most orm ossembly. (see Selection Table)] (
	36-A	36"	10-#9	#3 at 6"	13.2	12.0	9.4	1 ¾"	55	19"	2	131	5	Most arm assembly, (see Selection Table) 30' strain pole with or without luminaire]
	36-B			#3 at 6"	15.2	13.6	10.4	2"	55	21"	2	190	7	Mast arm assembly, (see Selection Table) Strain pole taller than 30' & strain pole with mast arm] (
ı	42-A	42"	14-#9	#3 ot 6"	17.4	15.6	11.9	2 1/4"	55	23"	2	271	9	Most orm assembly, (see Selection Table)	1

	FOUNDATION SELE ARM PLUS IL	CTION TABL SN SUPPORT	E FOR STANDA ASSEMBLIES	ARD MAST (ft)	
		FDN 30-A	FDN 36-A	FDN 36-B	FDN 42-A
Z	MAX SINGLE ARM LENGTH	32'	48'		
DESIGN SPEED		24' X 24'			
ISE		58, X 58,			
1=0		32' X 28'	32' X 32'		
80 MPH	LENGTH COMBINATIONS		36, x 36,		
l g ≆			40' X 36'		
Ι-			44' X 28'	44' X 36'	
z	MAX SINGLE ARM LENGTH		36'	441	
SPEED SPEED			24' X 24'		
leg			28' X 28'		
Ξ×	MAXIMUM DOUBLE ARM		32' X 24'	32' X 32'	
100 MPH WIND S	LENGTH COMBINATIONS			36' X 36'	
ls≆				40' x24'	40' X 36'
-					44' x 36'

ı	NOTES:
	Anchor bolt design develops the foundation capacity given under Foundation Design Loads.

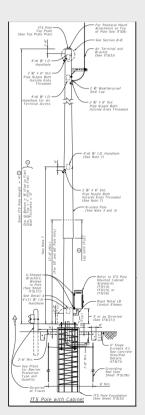

- ② Foundation Design Loads are the allowable moments and shears at the base of the structure.
- Toundations may be listed separately or grouped occording to similarity of location and type. Quantities are for the Contractor's information only.

 Field Penetrometer readings at a depth of approximately 3 to 5 feet may be used to adjust shart lengths.
- (5) If rock is encountered, the Drilled Shoft shall extend a minimum of two diameters into solid rock.
- (6) Decimal lengths in Design Table are to allow interpolation for other penetrometer values. Round to nearest foot for entry into Summary Table.

	ANCHOR BOLT & TEMPLATE SIZES														
BOLT DIA IN.	① BOLT LENGTH	TOP THREAD	BOTTOM THREAD	BOLT CIRCLE	Re	R)									
} /4"	1'-6"	3"	_	12 3/4"	7 1/8"	5 % "									
1 1/2"	3'-4"	6"	4"	17"	10"	7"									
1 ¾"	3'-10"	7"	4 1/2"	19"	11 1/4"	7 1/4"									
2-	4'-3"	8*	5"	21"	12 1/2"	8 1/2"									
2 1/4"	4'-9"	9"	5 1/2"	23-	13 1/4"	9 1/4"									

Min dimensions given, longer bolts are acceptable.

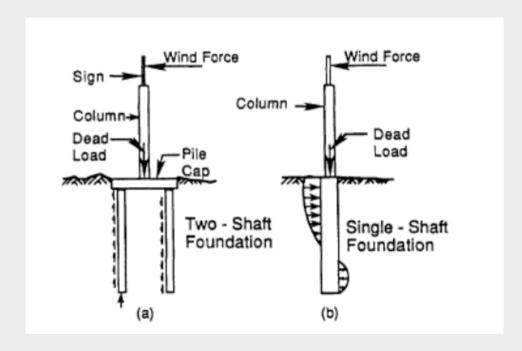
FO	UNDA	TION	ı Su	MMAR	Y TA	BLE	3						
LOCATION IDENTIFICATION	AVG.	FDN	NO.	(FEET)									
IDENTIFICATION	/ft.	TYPE	EA	24-A	30-A	36-A	36-B	42-A					
			_										
		_	_					-					
			_		_			-					
			_					\vdash					
			-					-					
								-					
		_			$\overline{}$								
		_	_										
		-	_		\vdash			-					
					_			-					
			_										
								-					
TOTAL DRILLED	TOTAL DRILLED SHAFT LENGTHS												
		pa t											



Structure	Standard	Soil Strength Parameters	Design Loading Conditions
Large Road Signs	SMD (8W2) - 08	N _{TCP} , <i>C</i> , φ	Not Specified
Overhead Sign Bridge	OSB - FD OSB - FD - SC	N _{TCP} , <i>C</i> , φ	Uplift Loading and Moment
Monotube Sign Structure (Cantilever)	MC(7) - 22	N _{TCP}	Axial, Moment, Torsion, and Shear
Monotube Sign Structure (Span)	MS(7) - 22	N_{TCP}	Axial, Moment, Torsion, and Shear
Cantilever Overhead Sign Support	COSS - FD	N _{TCP} , <i>C</i> , φ	Moment and Torsion
Roadway Illumination Pole	RID(2) - 20	N_{TCP}	Not Specified
High Mast Illumination Pole	HMIF(2) - 98	N_{TCP}	Not Specified
Traffic Signal Pole	TS - FD - 12	N_{TCP}	Moment and Shear
Intelligent Transportation Systems Pole	ITS(4) - 15	N _{TCP}	Not Specified

Intelligent Transportation Systems Pole

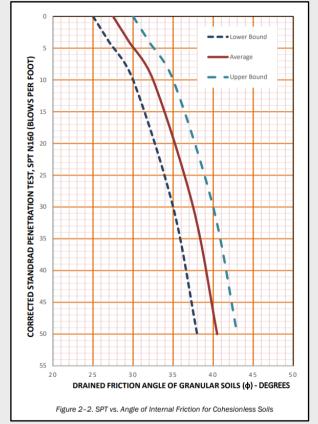
	TABLE 2: ITS POLE - 110 MPH (W/ 2 SOLAR PANELS) ①																			
		PO	LE SHAFT	10		BA	E (1)		TOP ②			A	NCHOR BOLT	3		FOUNDATION 3				
POLE TYPE		BOTTOM OUTSIDE DIA. (IN)	TOP OUTSIDE DIA. (IN)	WALL THICK NESS (IN)	INSIDE DIA. (IN)	OUTSIDE DIA. (IN)	BOLT CIRCLE DIA. (IN)	BOLT HOLE DIA. (IN)	THICK NESS (IN)	OUTSIDE DIA. (IN)	DIA. (IN)	NO. OF BOLTS	LENGTH OF BOLT MIN. (IN)	TEMPLATE INSIDE DIA. (IN)	TEMPLATE OUTSIDE DIA. (IN)	TEMPLATE WIDTH (IN)	CONE PI	AFT DEPTI ENETROME 'FT.) (SEE	TER (N -	DRILLED SHAFT DIA. (IN)
	'A'	'B'	'C'	'D'	'E'	'F'	'G'	'H'	T	· Jr	'K'	T.	'M'	'N'	'0'	'P'	N = 10	N = 15	N = 40	'R'
	20	10	8	1/2	10-1/16	21	16	1-1/4	1-1/2	9	1	4	29	14	18	2	14	12	10	36
	30	13	9	1/2	13-1/16	24	19	1-9/16	1-3/4	10	1-1/4	6	35	16-1/2	21-1/2	2-1/2	18	15	11	36
ЕD	40	15	9	1/2	15-1/16	25	21	1-9/16	1-3/4	10	1-1/4	6	35	18-1/2	23-1/2	2-1/2	20	17	12	42
SIDED	45	16	10	1/2	17-1/16	27	22	1-9/16	1-3/4	11	1-1/4	8	35	19-1/2	24-1/2	2-1/2	21	18	13	42
80	50	17	10	1/2	18-1/16	28	23	1-9/16	1-3/4	11	1-1/4	8	35	20-1/2	25-1/2	2-1/2	22	19	14	42
	55 ⑦	19	11	5/8	19-1/16	30	25	1-9/16	2	12	1-1/4	8	35	22-1/2	27-1/2	2-1/2	24	20	14	42
	60 ⑦	20	11	5/8	20-1/16	31	26	1-13/16	2	12	1-1/2	6	40	23	29	3	25	21	15	48


							TAE	3LE 3:				PH (V	// 1 50L	AR PANE	L) ⑤					
		PO	LE SHAFT	10	BASE PLATE (1)					TOP ② PLATE	ANCHOR BOLT ③						FOUNDATION 3			
POLE TYPE	POLE HEIGHT (FT)	BOTTOM OUTSIDE DIA. (IN)	TOP OUTSIDE DIA. (IN)	WALL THICK NESS (IN)	INSIDE DIA. (IN)	OUTSIDE DIA. (IN)	BOLT CIRCLE DIA. (IN)	BOLT HOLE DIA. (IN)	THICK NESS (IN)	OUTSIDE DIA. (IN)	DIA. (IN)	NO. OF BOLTS	LENGTH OF BOLT MIN. (IN)	TEMPLATE INSIDE DIA. (IN)	TEMPLATE OUTSIDE DIA. (IN)	TEMPLATE WIDTH (IN)	CONE PI	AFT DEPTH ENETROMET FT.) (SEE	'ER (N -	DRILLED SHAFT DIA. (IN)
	'A'	'B'	'C'	'D'	'E'	'F'	'G'	'H'	T	'J'	'K'	'L'	'M'	'N'	'0'	'P'	N = 10	N = 15	N = 40	'R'
	20	10	8	1/2	10-1/16	21	16	1-9/16	1-3/4	9	1-1/4	4	35	13-1/2	18-1/2	2-1/2	16	14	10	36
	30	13	9	1/2	15-1/16	24	19	1-9/16	1-3/4	10	1-1/4	6	35	16-1/2	21-1/2	2-1/2	18	16	11	36
ED	40	15	9	1/2	15-1/16	26	21	1-9/16	1-3/4	10	1-1/4	6	35	18-1/2	23-1/2	2-1/2	21	18	13	42
SIDED	45	16	10	1/2	16-1/16	27	22	1-9/16	1-3/4	11	1-1/4	8	35	19-1/2	24-1/2	2-1/2	23	19	14	42
00	50	17	10	1/2	17-1/16	28	23	1-9/16	2	11	1-1/2	8	40	20	26	3	24	20	14	42
	55 ⑦	19	11	5/8	19-1/16	30	25	1-13/16	2	12	1-1/2	8	40	22	28	3	27	22	15	42
1	60 (7)	20	11	5/8	20-1/16	31	26	1-13/16	2	12	1-1/2	8	40	23	29	3	28	23	16	48

5. Recommended embedment lengths are for information purposes only. Foundation embedment depth is based off Texas Cone Penetrometer Value N = 10 blows/ft. for soft soils and up to 40 blows/ft. for hard soils. Foundation lengths shall be as shown on the plans, or as directed by the Engineer. Foundations will be paid for under Item 416, "Drilled Shaft Foundations" unless otherwise shown on the plans.

Design of Laterally Loaded Structures

- Design philosophy different than bridges
 - Approach differs from axial capacity design
 - Brom's method
 - P-Y analysis
 - Transient load controlled
 - Often designed assuming loads are static
 - Often wider boring spacing



LRFD Update

- All standards currently use N_{TCP} , C, or Φ to determine foundation length
- Long-term, standards will be updated to LRFD
 - TCP → SPT
- Short-term, use <u>Geotechnical Manual LRFD (April 2024)</u>
 - Figure 2-2: SPT vs Angle of Internal Friction for Cohesionless Soils
 - Recommended to use "Lower Bound" of Φ
 - Appendix 2: N_{TCP} vs N_{SPT} correlation

In Clay:
$$N_{TCP} = 1.5 \times N_{SPT}$$

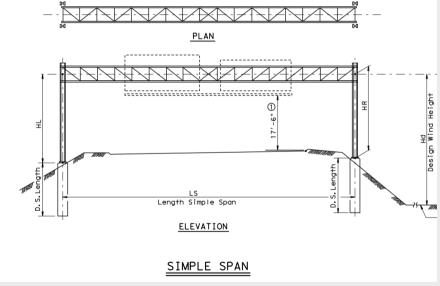
In Sand:
$$N_{TCP} = 2.0 \times N_{SPT}$$

Soil Property Selection Best Practices

- Boring proximity
 - New boring with SPT and laboratory testing
 - Existing TCP boring
- Soil type
- Soil uniformity with depth
- Future improvements/changes of conditions
- Shrinking/swelling soils

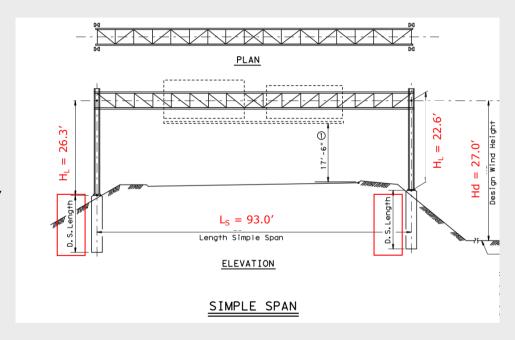
Examples

- Overhead Sign Bridges (OSB)
 - Axial (Uplift) Load
- Cantilever Overhead Sign Structure (COSS)
 - Lateral and Torsional Load


Overhead Sign Bridges (OSB)

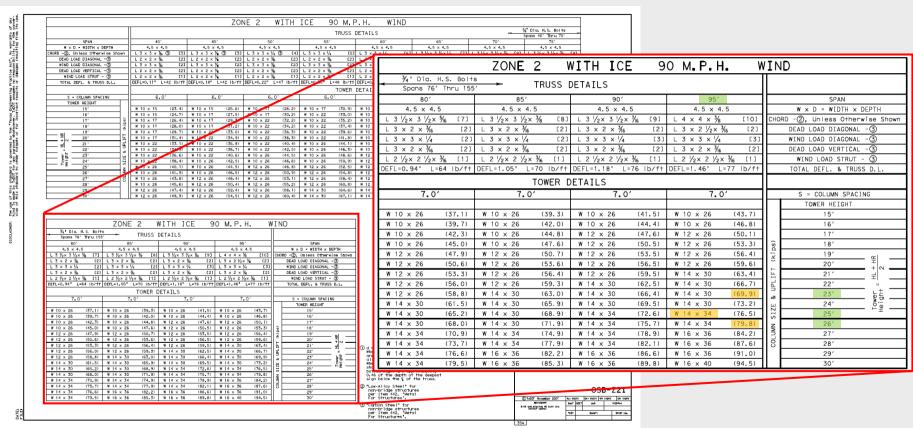
Design Loading Conditions: Uplift Loading and Moment

Foundation Diameter: 24" - 54"

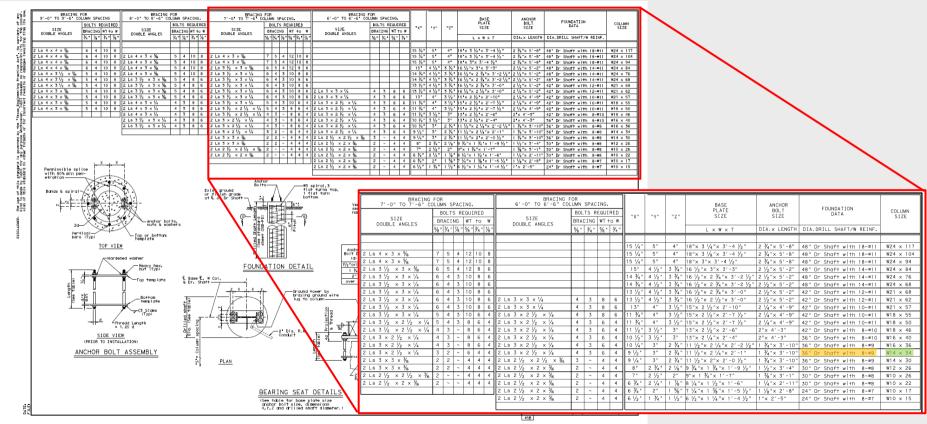

Foundation Embedment: 4' - 55'


Overhead Sign Bridges (OSB)

- Given:
 - Span, $L_S = 93.0'$
 - Left Tower Height, $H_1 = 26.3'$
 - Right Tower Height, $H_R = 22.6'$
 - Design Wind Height, $H_d = 27.0'$
 - Avg. <u>SPT</u> Penetrometer Value,N = 20
 - Dawson County



Overhead Sign Bridges (OSB)



- Zone 2
- 90 mph
- Design Height, Hd = 27.0'

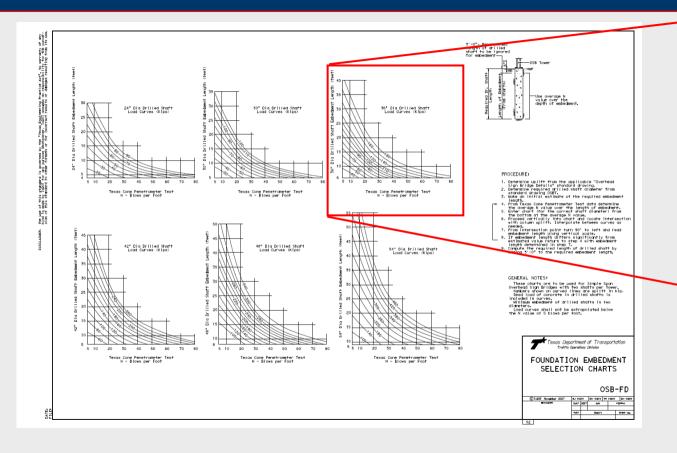
Standard: OSB-Z2I

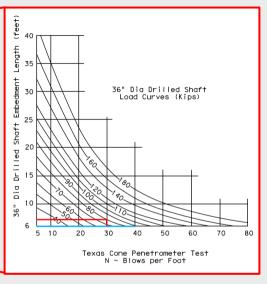
Appendix 2

Ancillary Structure Foundations

When using roadway and traffic standards developed for foundations from TCP information (COSS, High Mast Illumination Poles), use the following correlations (from *Touma and Reese, 1972*) from SPT values acquired in the drilled boring logs:

In Clay:
$$N_{TCP} = 1.5 * N_{SPT}$$


Where, N_{TCP} = equivalent TCP blow counts when using STP information


N_{SPT} = uncorrected blow counts from STP in-situ testing

These correlations apply to the standard foundation embedment selection charts regarding TCP information currently refenced in the standards.

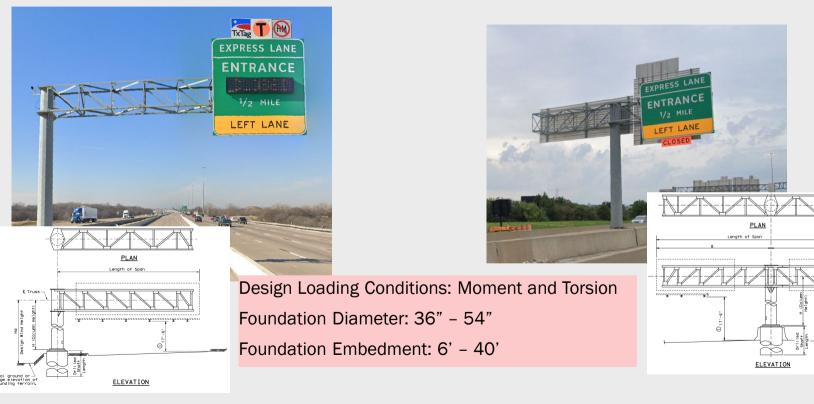
$$N_{SPT} = 20 bl$$

In Clay:
$$N_{TCP} = 30 \text{ bl}$$

In Sand: $N_{TCP} = 40 \text{ bl}$

$$Uplift_{L} = 80 \text{ k}$$

$$Uplift_{R} = 70 \text{ k}$$


$$L_L = 7' + 3' = 10'$$

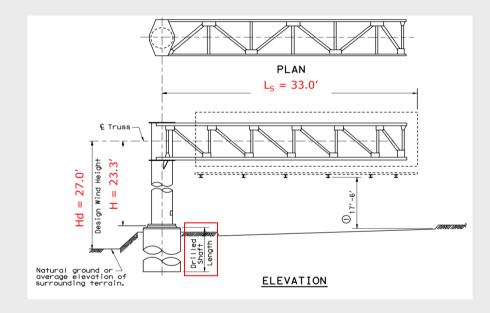
 $L_R = 6' + 3' = 9'$

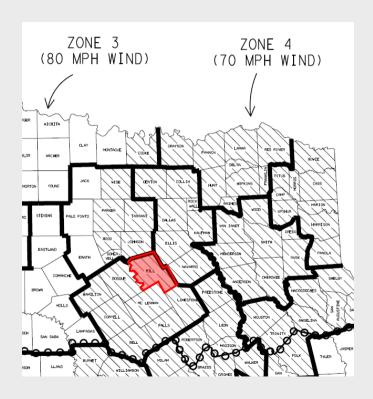
Sand (40 bl)

$$L_L = 6' + 3' = 9'$$

 $L_R = 6' + 3' = 9'$

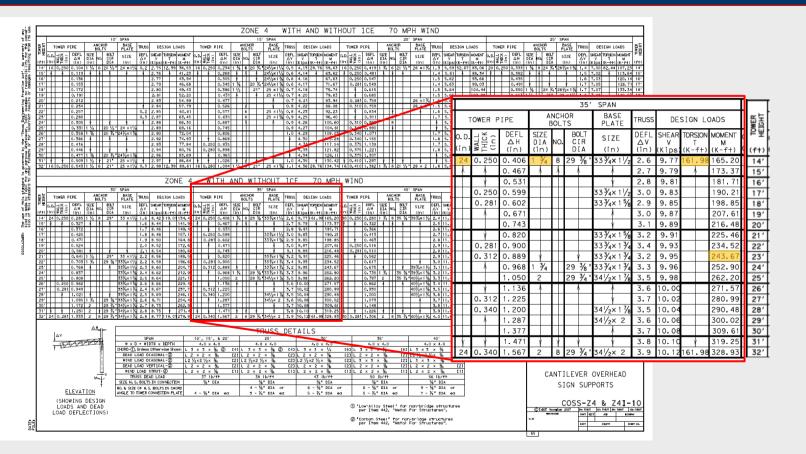
Cantilever Overhead Sign Structures (COSS)

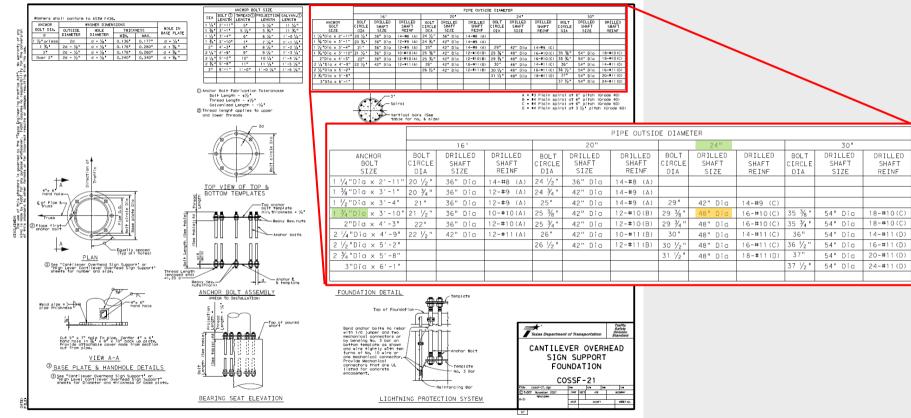


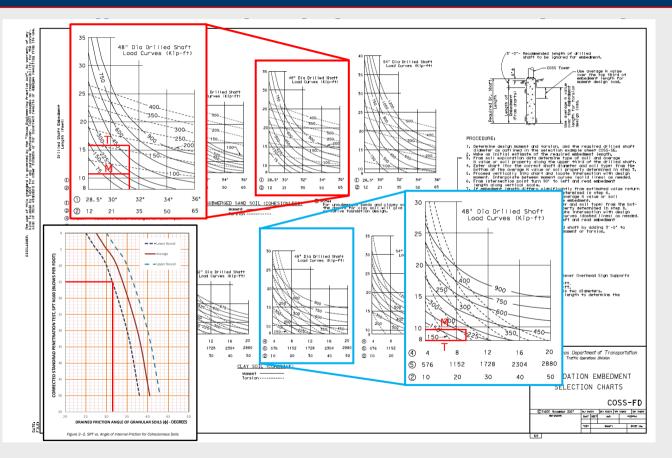


Cantilever Overhead Sign Structures (COSS)

• Given:


- Cantilever Span = 33.0'
- Column Height, H = 23.3'
- Design Wind Height, $H_d = 27.0'$
- Avg. <u>SPT</u> Penetrometer Value,N = 15
- Hill County




- Zone 4
- 70 mph
- Design Height, Hd = 27.0′

Standard: COSS-Z4 & Z4I-10

Torsion = 162 k-ft Moment = 244 k-ft N_{SPT} = 15 bl

Sand:

Method 1:

$$N_{TCP} = 2 \times N_{SPT} = 30 \text{ bl}$$

 $L = 16' + 3' = 19'$

Method 2:

$$N_{SPT} = 15 \text{ bl}$$

$$\downarrow$$
Figure 2-2 (Lower Bound)
$$\downarrow$$

$$\phi = 31^{\circ}$$

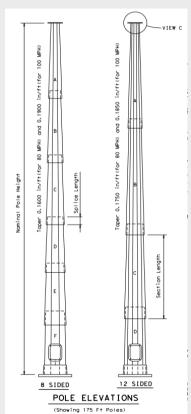
$$L = 16' + 3' = 19'$$

Clay:

$$N_{TCP} = 1.5 \times N_{SPT} = 22.5 \text{ bl}$$

 $L = 10' + 3' = 13'$

Future Plans


- Research FY25
 - Refine design approach compliant with current AASHTO requirements
 - Simplified soil parameters for LRFD based design approach
- Standard Updates
 - Design updates
 - Future standards to add N_{SPT} and/or C and Φ

Conclusions

- Every standard is different
 - Read the general notes on usage
- Geotechnical parameter selection requires discernment
 - Use all the information you have
- Keep an eye out for additional updates
- Feel free to reach out if you have questions

Questions?

Ryan Eaves, P.E.

Bridge Division – Geotechnical Branch Manager

Ryan.Eaves@txdot.gov