

Slope Stability for New Construction, Phased Construction, and Rehabilitation

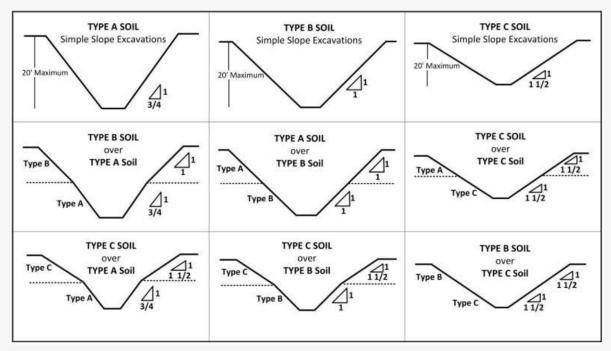
Alexis Barron, P.E. BRG-GEO

April 25, 2025

New and Phased Construction

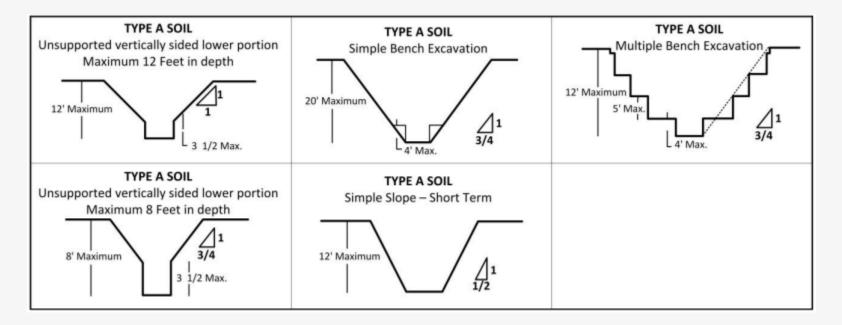
New and Phased Construction

- Item 403 "Temporary Special Shoring"
 - Shoring must comply with OSHA 29 CFR Part 1926, Subpart P Excavations
 - Vertical or sloped cuts, benches, shields, support systems, or other systems to provide the necessary protection in accordance with the approved design
- Consider short term parameters

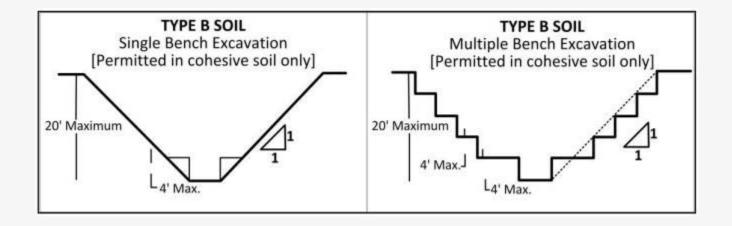


OSHA Subpart P - Excavations

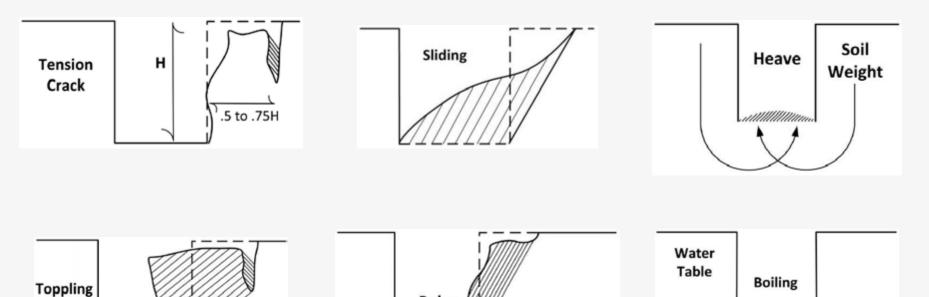
Soil Type	Soil Examples	Unconfined Comp. Strength (TSF)	Max Allowable Slopes for Excavations Less Than 20 ft Deep
Stable Rock	Bedrock, Basalt, Limestone, Granite, Sandstone		Vertical (90°)
А	Clay, Silty Clay, Sandy Clay, Clay Loam, Caliche, Hardpan, Silty Clay Loam, Sandy Clay Loam	>1.5	34:1 (53°)
В	Gravel, Silt, Silt Loam, Sandy Loam, Clay Silty Loam, Sandy Clay Loam	0.5 to 1.5	1:1 (45°)
С	Gravel, Sand, Loamy Sand, Submerged Soil or Soil From Which Water is Freely Seeping	< 0.5	1½:1 (34°)



Layered Soils

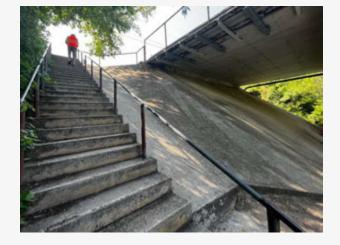


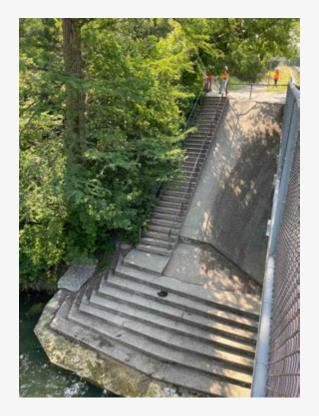
Excavations in Type A Soils


Excavations in Type B Soils

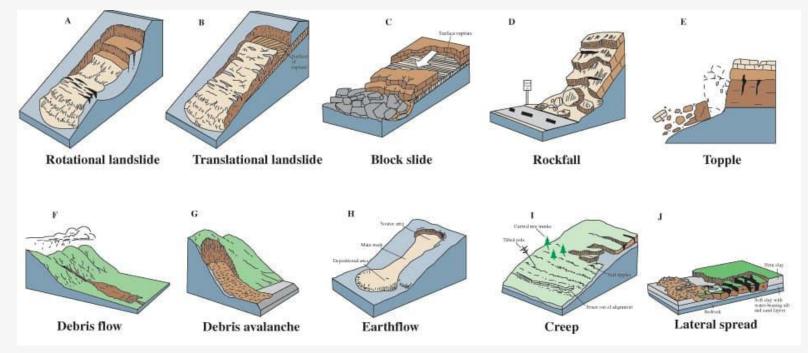
 $\gamma\gamma\gamma$

Trench Failures


Bulge


Subsidence

Quick Case Study


11

Rehabilitation

Types of Slope Failures

Common Causes of Slope Failures

- Water infiltration
- Increase load at the top of the slope
- Removal of material along the toe
- Seismic activity
- Rapid drawdown
- Vegetation loss

Rotational Failure

Excessive load at top of slope

High Plasticity Clays

- Absorbs large amounts of water (when available)
- Swells and softens when wet
- Shrinks and cracks when dry
- Simple lab test to determine Plasticity Index (PI)
- PI > 30 is troublesome

High Plasticity Clays

- As constructed, material is dry and well compacted
- Surface immediately begins to absorb water, swell and soften
- During dry periods, material shrinks and cracks
 - Shrink/swell contributing to global failure
- During next wet cycle, rain penetrates more **deeply**, clay material swells and softens further
- Finally, material can no longer hold its own weight, and flows down the slope

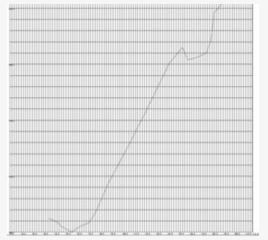
Plasticity Index Recommendations

TxDOT Geotechnical Manual – LRFD Table 7-1: Plasticity Index Range for Exposed Side Slopes Required for FS=1.3 for Long Term Drained Condition			
Slope (H:V)	Plasticity Index (PI) (%)		
2.5:1	<5		
3.0:1	<20		
3.5:1	<35		
4.0:1	<55		
4.5:1	<85		

General Guide for Plasticity Index Range for Various Slopes Required for FS = 1.3 (global) in the Long-Term (Drained) Condition using infinite slope analysis accounting for seepage of water parallel to face of slope. We recommend analysis and checking global stability in all slopes.

FS = 1.5 or greater required for slopes (and walls) supporting buildings and critical infrastructure.

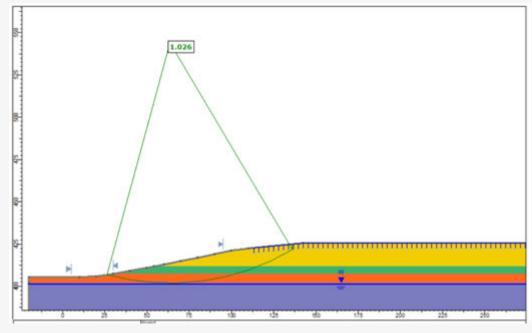
Common Mistake


Regrading the slope

January 2022

Repair – Step 1: Site Investigation

Survey the Area



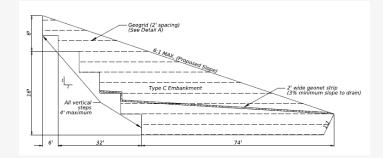
Drill Borings

Repair – Step 2: Modeling

Estimate Failure Depth

Repair – Step 3: Evaluation

Ask yourself these questions:


- What is the primary cause and mode of failure?
 - Establish preliminary repair options
- Are there ROW constraints?
 - Shoring may be needed
- Is the failure near a major roadway or critical facility?
 - Establish timeline for design and repair
- Budget?

Repair – Step 4: Long-term Fix

- Add drainage
- Flatten slope
- Remove and replace <u>all</u> problem material
 - Replacement possibly to include reinforcement (RSS)
- Install retaining wall
- Maintain vegetation on slopes.
 - Mulching, Seeding, Soil Retention Blankets

Take Aways

- Natural and engineered fill slopes should not be overlooked in design or construction phase of infrastructure projects
- Failures are often due to a combination of factors, and most efficient fix is usually a combination of methods
- Identify **early** and **fix the source** of the problem.
 - If potential failure is identified early, time and costs for maintenance and potential retrofit and rebuilding is significantly better
 - Drainage, geometry, and soil/fill properties are key factors in stability
- Effectiveness should come first, but long-term cost depends on thorough initial design, quality construction and routine monitoring to catch potential problems

April 25, 2025

Questions?

Alexis Barron, P.E. BRG-GEO