

TXDOT PROJECT NO. 0-7193

DEVELOP ASSESSMENT AND MITIGATION GUIDANCE
FOR ANCILLARY HIGHWAY STRUCTURES WITH EXISTING
CRACKS

TASIG Meeting RESEARCH TEAM

UT Austin – Junghoon Sohn, Shouchen Zhang (PhD Student), Dr. Mojtaba Aliasghar, Dr. Aidan Bjelland, Dr. Todd Helwig, Dr. Matthew Hebdon, Dr. Salvatore Salamone

Texas A&M Hangil Kim (PhD Student), Dr. Arash Rockey, Dr. Stefan Hurlebaus, Dr. Peter Keating, Dr. Kinsey Skillen

AUGUST 14, 2025

₩TEXAS

Research Team (RT) – UT Austin

- Research Supervisors Co-PIs: Todd Helwig, Matthew Hebdon, and Salvatore Salamone
- Graduate Research Assistants (GRAs and Post-Doctoral Researchers):
 - Junghoon Sohn and Shouchen Zhang (PhD Candidate)
 - Post-Doctoral Researchers: Mojtaba Aliasghar and Aidan Bjelland

ĀМ

Research Team (RT) – Texas A&M

- Research Supervisors Co-PIs: Stefan Hurlebaus, Peter Keating, Kinsey Skillen, and Arash Rockey
- Graduate Research Assistants (GRAs):
 - HanGil Kim (PhD Candidate)

TEXAS	Æ
Presentation Outline	
	- 1
 Introduction and Background 	Junghoon
 Field Assessment 	Junghoon
 Lab Test Setup 	Junghoon
 Current Results 	
– UT	Shouchen
Texas A&M	– Hangil
 Conclusion and Future work 	– Hangil
	4

Introduction

- Ancillary structures experience repetitive fatigue loading
- Early detection is critical to prevent failure and reduce cost

Traffic Signal Structure (TSS)

Cantilever Overhead Sign Structures (COSS)

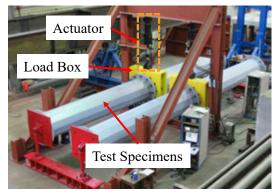
High Mast Illumination Pole (HMIP)

₩TEXAS

Fatigue Sources by Structure Type

- TSS/COSS: Vibration from mast arm (wind/galloping)
- HMIP: Wind-induced vortex shedding

Mast arm vibration (TSS/COSS)



Wind-induced vortex shedding (similar to HMIP)

Lab Testing Background

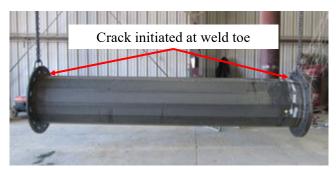
- Lab Test (Pool 2010, Balivanis 2013, Morovat et. al, 2018)
- Crack started at weld toe between baseplate and pole

Horizontal test setup

Vertical test setup

Test Results

TEXAS



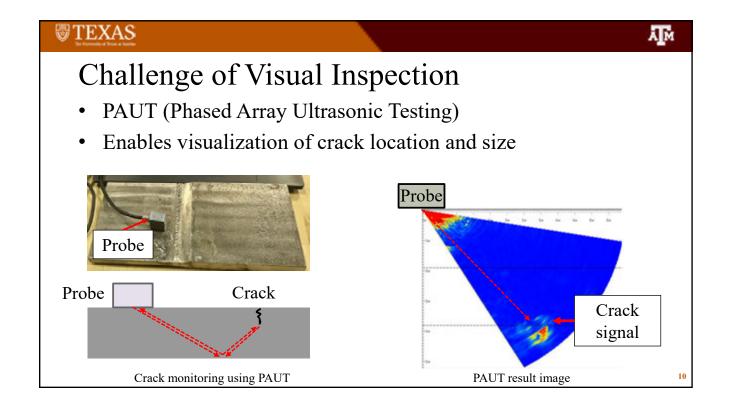
Galvanizing-Induced Cracking

- Galvanizing monitoring (Kleineck 2011)
- Thermal stress during galvanizing can cause galvanizing crack
- Cracks typically start at <u>weld toe</u> due to stress concentration

Thermal stress during galvanizing

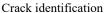
Typical location of galvanizing crack

Challenge of Visual Inspection


- Cracks often remain invisible in early stages
- NDT (Non-Destructive Testing) is essential for early detection

Cracks not visible to eye

Visible significant crack



Crack Repair Method Overview

- Identify and fully remove the crack through grinding
- Restore the grinded area by rewelding the section

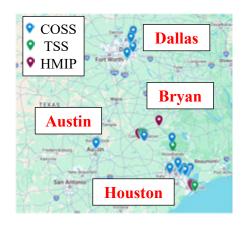
Crack removal (grinding)

Repair by rewelding

₩TEXAS

Research Objectives

- Field assessment using PAUT various jurisdictions of Texas
- <u>Lab testing</u> of repair strategies
- Provide <u>practical recommendations</u>
 - Monitoring
 - Repairing
 - Potential Component Replacement


₩TEXAS AM Presentation Outline Introduction and Background - Junghoon Field Assessment Junghoon Junghoon Lab Test Setup Current Results - UT Shouchen - Texas A&M - Hangil Conclusion and Future work - Hangil

Field Assessment Scope

- 120 poles across Austin, Bryan, Dallas, Houston
- 40 each: COSS/TSS/HMIP

Structural	No. of inspected poles				
Type	Austin	Bryan	Dallas	Houston	Total
COSS	10	2	12	18	40
TSS	10	10	10	10	40
HMIP	10	10	10	10	40
Total			120		

Field Assessment Procedure

- Measured dimensions and PAUT were used to detect cracks
- PAUT was effective in identifying weld toe cracks

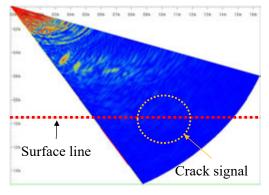
Field assessment

Dimension Measurement

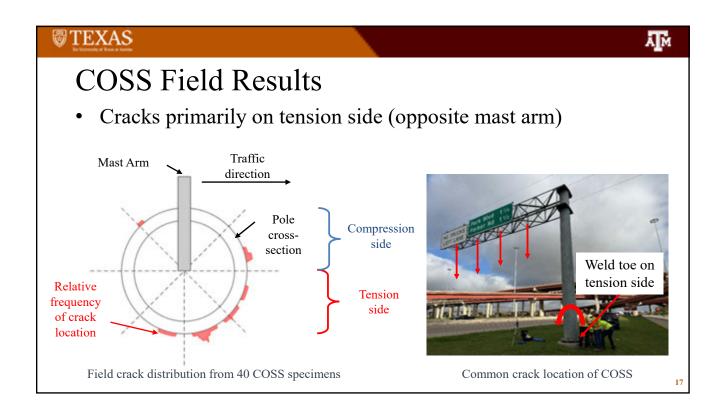
PAUT crack detection

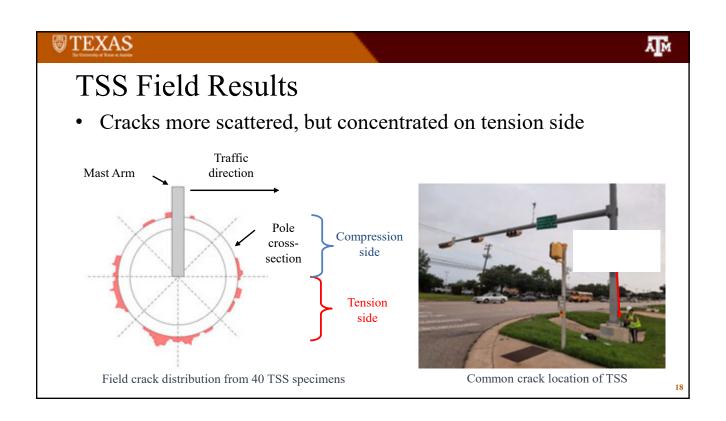
15

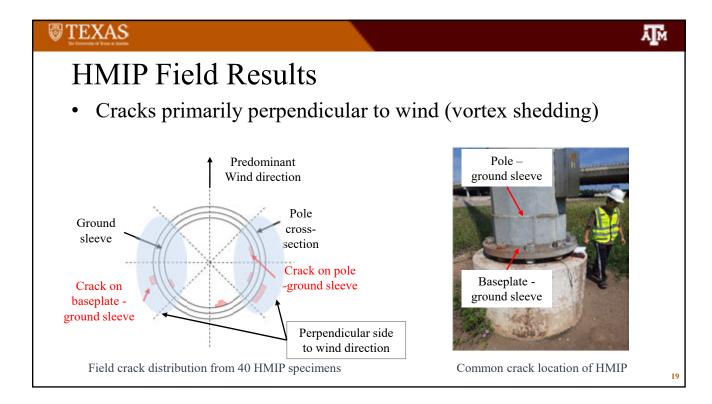
TEXAS



Field Assessment Procedure


- Measured dimensions and PAUT were used to detect cracks
- PAUT was effective in identifying weld toe cracks

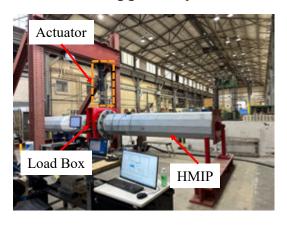


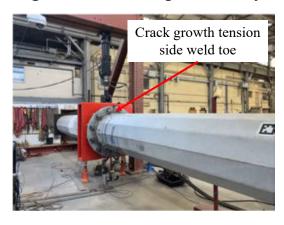


PAUT result

Field Assessment Findings

- TSS & COSS: Cracks mainly located on the tensile side
- HMIP: Cracks typically occur <u>perpendicular</u> to the predominant <u>wind direction</u>
- <u>Crack-prone locations</u> should be <u>regularly monitored</u> based on structure type


₩TEXAS AM Presentation Outline Introduction and Background - Junghoon Field Assessment Junghoon • Lab Test Setup Junghoon Current Results - UT Shouchen - Texas A&M - Hangil Conclusion and Future work - Hangil


₩TEXAS

AM

Lab Test setup

- UT: testing HMIP, COSS / A&M: testing TSS
- Actuator applies cyclic load through load box upward only

I ale Manitanina & Danais

Lab Monitoring & Repair

- Periodic PAUT scans monitor crack growth
- Repair triggered when crack exceeds length or depth threshold

Crack monitoring (PAUT)

Ground area before rewelding

Rewelding in progress

Post-repair weld

₩TEXAS

Pre-Rewelding Strategy

- Option 1: Grind groove to remove crack
- Option 2: No groove, allow weld to penetrate crack

Crack removed prior to rewelding

Crack left in place prior to rewelding

Post-Rewelding Strategy

- Option 1: Leave weld as-is
- Option 2: Shallow weld toe grinding (<1mm depth)
- Option 3: Full surface sanding to remove surface irregularities

Weld toe after shallow grinding

Smoothed surface after sanding

. .

₩TEXAS

Presentation Outline

• Introduction and Background

Junghoon

Field Assessment

- Junghoon

Lab Test Setup

Junghoon

- Current Results
 - UT

- Shouchen

- Texas A&M

- Hangil

• Conclusion and Future work

- Hangil

ДM

HMIP Test

• Specimens were taken from in-service HMIPs in Houston.

• Total length: 14 ft 4 in

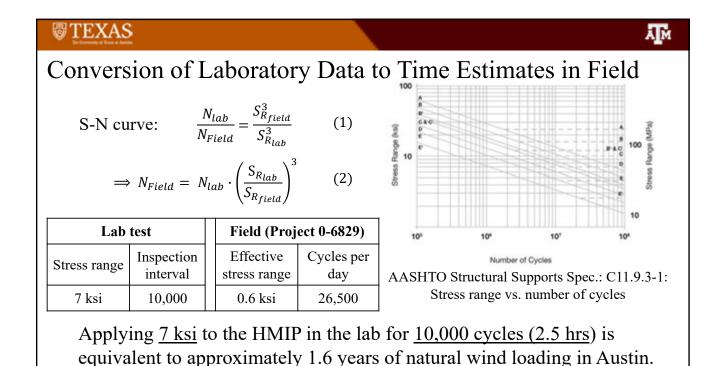
• Wall thickness: 0.45 in

HMIP specimens transported from Houston to UT Austin

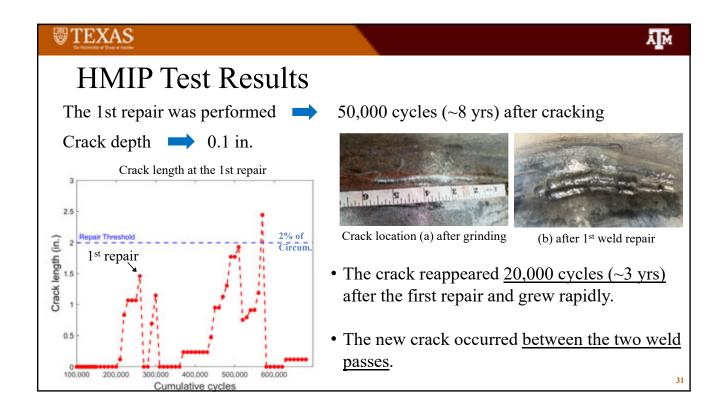
HMIP test setup

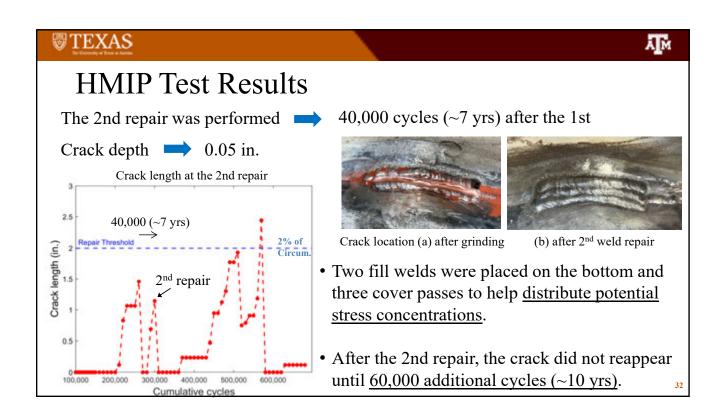
__

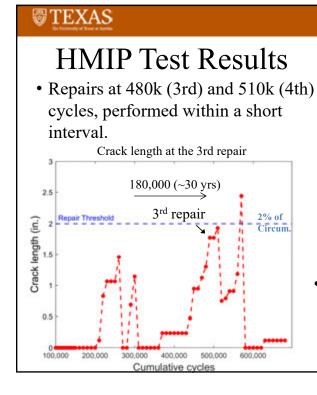
₩TEXAS


HMIP Test

Geometry	12-sided	
Diameter of base plate	49 in.	
Wall thickness	0.45 in.	


HMIP test setup


Lab test setup		Field assessments (TXDOT Project 0-6829)				
Stress range	Controlling amplitude	Frequency		Effective stress range	Amplitude at 14'-4"	Cycles per day
7 ksi	0.19 in	1.25 Hz		0.6 ksi	0.01 in	26,500



₩TEXAS ĀМ **HMIP Test Results** 210,000 cycles A crack first appeared (approx. 34 yrs) Welding repairs 5 times Change in East_B2 crack length propagation 5th repair 4th repair 3rd repair Circum. 1st repair - Base plate Top 2nd repair Bend 2 500,000 East HMIP

Cumulative cycles

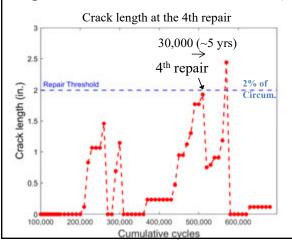
ĀМ

Crack location (a) after grinding

(b) after 3rd weld repair

Repair	Groove grind	
3	N	

After the 3rd repair, PAUT showed that <u>the</u> <u>crack tip remained</u> and quickly penetrated the weld, becoming visible on the surface.

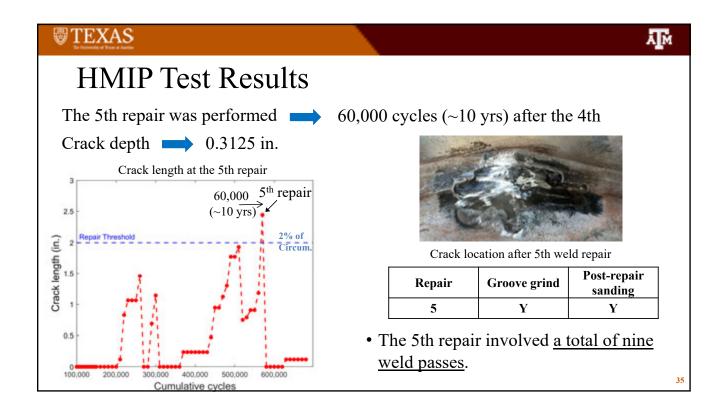

33

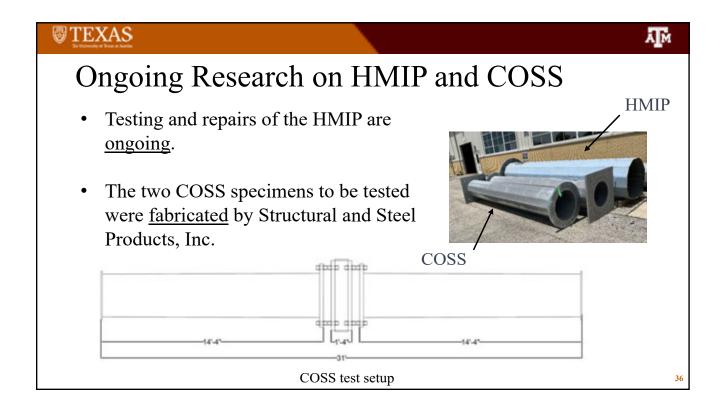
ĀМ

HMIP Test Results

₩TEXAS

• Repairs at 480k (3rd) and 510k (4th) cycles, performed within a short interval (~5 yrs).

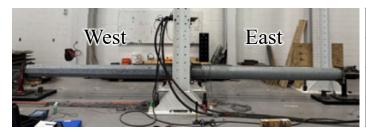




Crack location after 4th weld repair

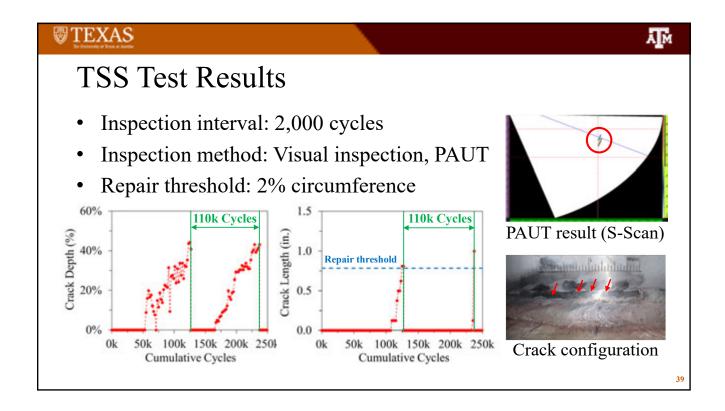
Repair	Groove grind	Post-repair sanding
3	N	N
4	Y	Y

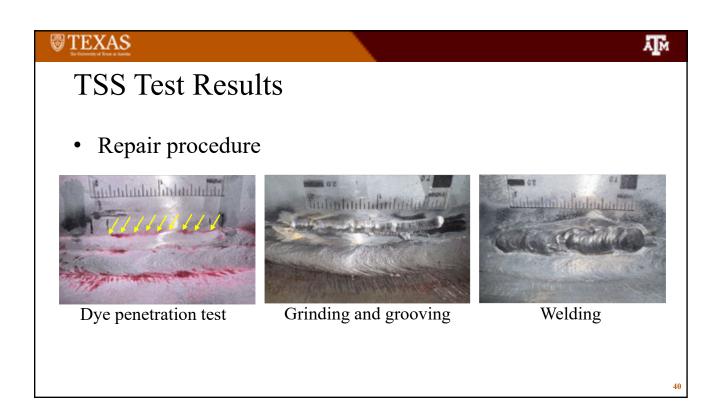
• The 4th repair removed the crack, followed by <u>surface sanding after welding</u> to reduce stress concentration.

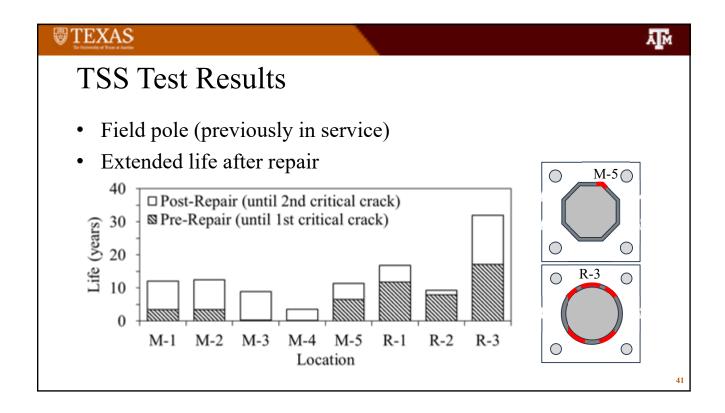


₩TEXAS ĀМ Presentation Outline • Introduction and Background - Junghoon Field Assessment Junghoon • Lab Test Setup Junghoon • Current Results - UT - Shouchen - Hangil - Texas A&M Conclusion and Future work - Hangil

₩TEXAS


TSS Test Results




Location	West	East	
Geometry	8-sided	Round	
Diameter	12.0 in.	12.5 in.	
Thickness	0.255 in.	0.181 in.	

\circ S3	3
\$1	S2
O S4	1 0

Setup	Stress Range	Loading Stress	Frequency
Side 1 (S1)	15 ksi	2 – 17 ksi	1 Hz
Sides 2–4 (S2–S4)	10 ksi	2 – 12 ksi	1.25 Hz

AM

TSS Test Results

2 Round Specimens – Fabricated by Valmont Industries

- Test plan: Fabricated round poles
- Outer diameter: 21 in.
- Wall thickness: 0.313 in.

AM

Experimental Test Findings

- (Multi-Sided Pole) Fatigue crack <u>initiates from bend</u>
- Repairs → Extended fatigue life
- (TSS) Fatigue performance: <u>Round Pole > Multi-sided</u> pole

4

⊕TEXAS ĀМ **Presentation Outline** • Introduction and Background Junghoon Junghoon Field Assessment Junghoon Lab Test Setup • Current Results - UT - Shouchen - Hangil - Texas A&M Conclusion and Future work - Hangil

ДM

Conclusions

- TSS, COSS: Fatigue crack commonly occurs on the tension side (constant bending moment from mast arm dead load)
- HMIP: Fatigue crack commonly occurs <u>perpendicular to</u> <u>the predominant wind direction</u> (wind-induced vortex shedding)
- Multi-sided poles: Fatigue crack initiates from the bend
- Repair: Extend fatigue life of the pole

15

₩TEXAS

Future Work

- Complete experimental tests (TSS, COSS, HMIP)
- Develop certification methods for inspection personnel
- Finalize guidance on crack mitigation, repair, or replacement
 - Identify effective <u>repair methods</u> (e.g., grooving before, grinding after repair) and <u>optimal repair timing</u> (Crack depth and length)

AM

Principle Investigator Contact Information

Dr. Todd Helwig

- Phone No: (512) 924-5903

- Email address: thelwig@mail.utexas.edu

• Dr. Matt Hebdon

- Phone No: (512) 471-1619

- Email address: <u>matt.hebdon@utexas.edu</u>

• Dr. Salvatore Salamone

- Phone No: (512) 232-3427

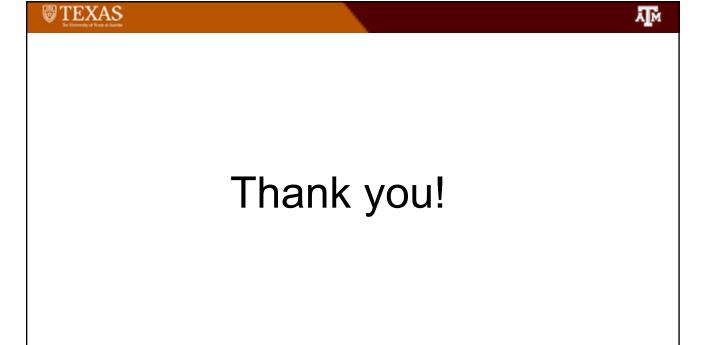
Email address: <u>salamone@utexas.edu</u>

Dr. Stefan Hurlebaus

• Phone Number: (979) 845-9570

• Email address: shurlebaus@civil.tamu.edu

Dr. Peter Keating


• Phone Number: (979) 845-9969

• Email address: <u>keating@civil.tamu.edu</u>

• Dr. Kinsey Skillen

• Phone Number: (979) 845-1520

• Email address: <u>skillen@tamu.edu</u>

