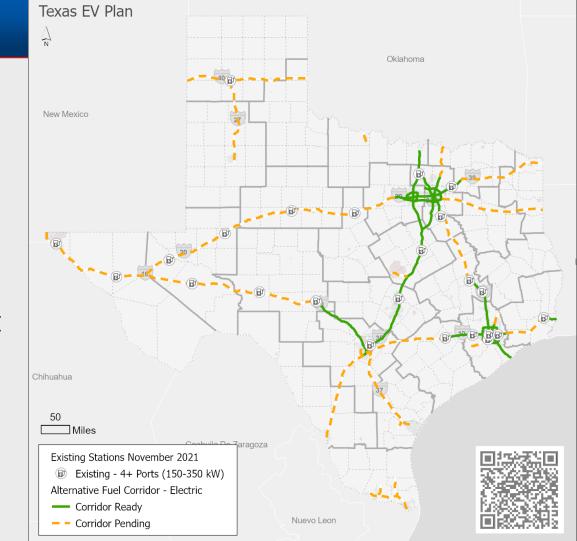


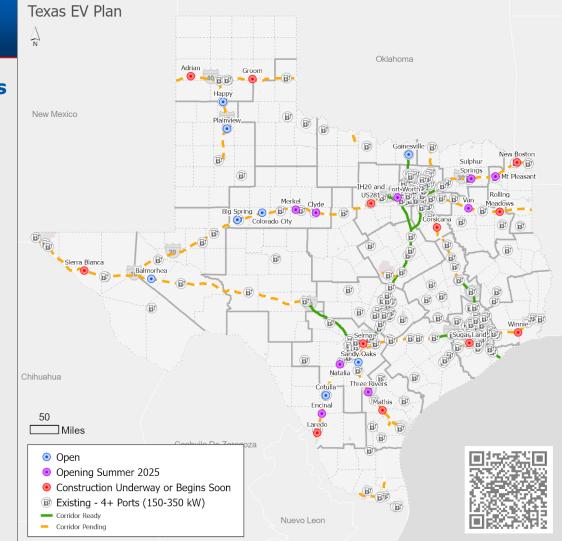
# Texas Electric Vehicle Infrastructure Plan


Transportation Planning & Programming Data Management



#### **NEVI Background**

In 2021, the Infrastructure Investment and Jobs Act (IIJA) established the National Electric Vehicle Infrastructure Program ("NEVI").


 In 2021, 25 stations met NEVI requirements from 2021





#### **Phase 1 - Alternative Fuel Corridors**

- Today 478 stations meet
   NEVI requirements from 2021
- 82 locations as part of the Texas NEVI program
  - **29** Under Construction
  - **53** TIP/STIP Phase (paused)



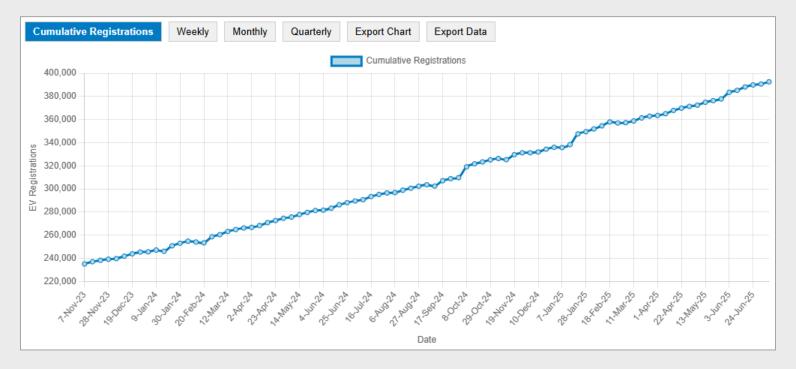


#### **Eight Stations Open**















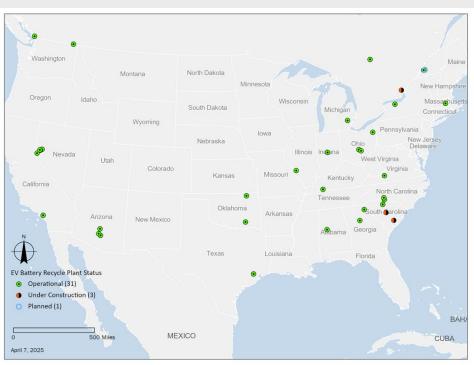

#### **EV Registration Summary (2023-2025) - 392,624 EVs currently in Texas**





#### **Trends**

- Texas adding 2,000 +/- EVs week
- US battery manufacturing capacity est. at 1,128 GWH year by 2027
  - Capacity for **14.7M** EVs/year
- US 2024 sales 15.9M
  - **1.27M** EVs
  - 324K Plug-In Hybrid
  - **1.5M** Mild Hybrid (no plug)
- Peak ICE **17M** in 2017
- An EV has been the best-selling car in the world the last 2 years



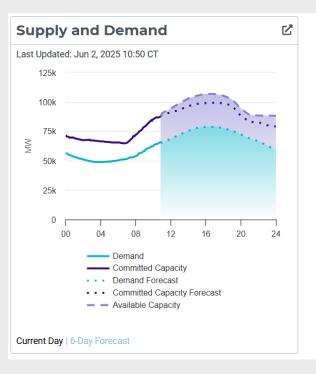


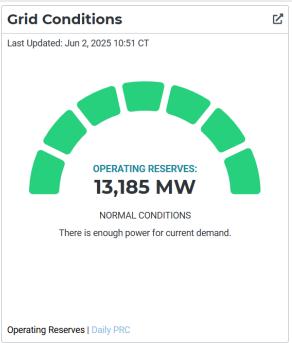

#### **Battery Factories**

#### Washington North Dakota Montana Minnesota New Hampshire Idaho Wisconsin Massachusett South Dakota Connecticut Wyoming Pennsylvania lowa New Jersey Nebraska Delaware Illinois Indian West Virginia Nevada Utah Colorado California Oklahoma Arkansas New Mexico Alaama Georgia Texas Louisiana Florida **EV Battery Factory Status** Operational (22) O Under Construction (23) O Planned (5) BAH MEXICO 500 Miles CUBA April 7, 2025

#### **Battery Recycling Factories**







#### **Electrical Grid Fuel Mix**

#### **Fuel Mix** 区 63.4% Zero Carbon Last Updated: Jun 2, 2025 10:46 CT CURRENT MONTHLY **GENERATION** CAPACITY Solar 22,634 MW (34.6%) 30,637 MW Wind 13,759 MW (21.0%) 39,759 MW Hydro 138 MW (0.2%) 556 MW **Power Storage** 96 MW (0.1%) 11,372 MW Other 0 MW (0.0%) 172 MW **Natural Gas** 18,670 MW (28.5%) 68,547 MW **Coal and Lignite** 5,127 MW (7.8%) 14,713 MW Nuclear 5,027 MW (7.7%) 5.268 MW

Previous Day | Real-Time | Current Day

#### Supply/Demand





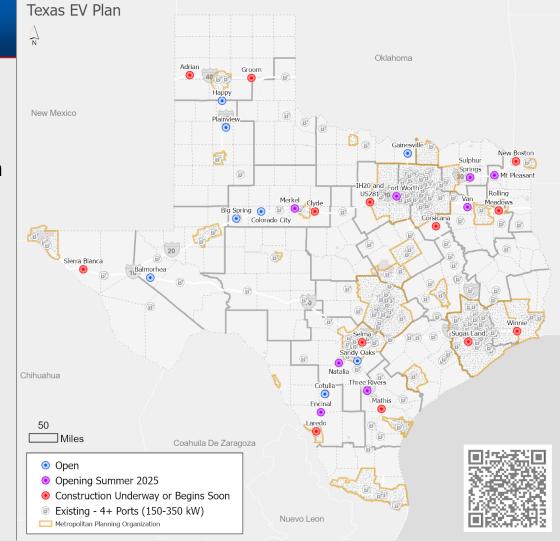


### Thank You!

Michael Chamberlain

Texas Department of Transportation

Michael.Chamberlain@txdot.gov


512.851.9039

Program Email Address:

TxDOT\_NEVI@txdot.gov

Much more found here:

EV Program Landing Page





## Introduction to CEM

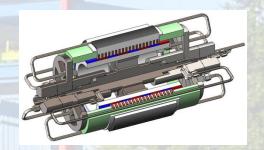
# and Hydrogen Research

MICHAEL LEWIS (512) 232-5715

MCLEWIS@CEM.UTEXAS.EDU

# University Organized Research Unit

CEM is an Organized Research Unit (ORU) within the Cockrell School of Engineering at The University of Texas at Austin


# Operate under Sponsored Research Agreements with Government and Industry

- Often using industry funding/support as cost share to federal funding
- Past and current programs with DOD, DOE, and DOT

Full-time research staff (engineers/scientist and technicians) with traditionally no faculty appointments

Approximately 30 staff members + faculty and staff







# Research Program Areas





Electromechanical Systems



**Rotating Machines** 



Electromagnetic Launch





**Hybrid Vehicles** 





**Grid Solutions** 



Hydrogen Energy Systems

#### **Faculty Collabs**



**Gas Turbine Testing** 



Additive Manufacturing



High Voltage Power Electronics

## **CEM Facilities**

CEM houses extensive fabrication, assembly, and testing facilities in a 140,000 sq ft air-conditioned high-bay space. The 70 ft. tall High-Bay features two 25 ton cranes with an additional 25 ton crane servicing a machine shop area. The Center also has 10,000 sq ft of air-conditioned space available in eight additional lab spaces, and a 1,200 sq ft welding shop.



140,000 sqft High-Bay w/ Fabrication Capabilities



Composite Winding and Fabrication



MW Capable Microgrid Test Bed

# Hydrogen Research

Began hydrogen research in 2006 with the first and only hydrogen fueling station and commercial fuel cell vehicle in Texas.

Leveraging expertise in hybrid vehicle powertrains



Prototype fuel cell vehicle demos

Ultra light-duty to heavy-duty

Other hydrogen infrastructure technologies









#### Hydrogen Infrastructure Research

#### It's Not Just the Vehicle

All aspects of hydrogen transportation fuel supply chain and infrastructure must be addressed. CEM performs R&D in all areas...

- Hydrogen Compression

- Hydrogen Generation

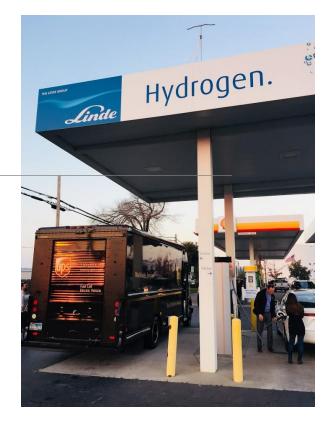


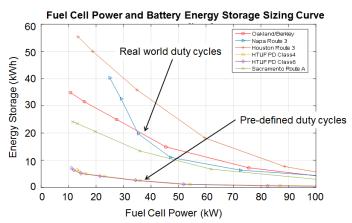
Compresso

- Hydrogen Storage






# Hydrogen Fuel Cell Delivery Van

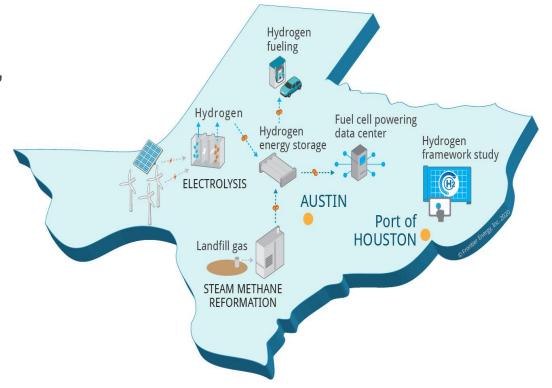

**Sponsor:** Department of Energy, California Energy Commission, South Coast Air Quality Management District

**Partners:** Center for Transportation and the Environment, Unique Electric Solutions, Valence Technologies, Hydrogenics, United Parcel Service

Objective: Develop and demonstrate a hydrogen fuel cell delivery van

**Goal:** Deploy 16 zero emissions fuel cell delivery vans in California to accelerate commercialization of medium-duty hydrogen trucks






# Demonstration and Framework for H2@Scale in Texas and Beyond

Two unique RD&D tracks to understand the potential of integrating hydrogen with multiple co-located platforms and existing resources

□ Demonstrate multiple RH₂ generation options, co-located with vehicle fueling and a large base load consumer to enable cost-effective H₂ energy solutions

□ Develop framework for actionable H₂@Scale pilot plans in Texas, Port of Houston and Gulf Coast region, including energy storage



# **Project Timeline and Partners**

#### Timeline

- Project Start Date: July 2020
- Project End Date: June 2025

Currently in the demonstration phase and aiming to wrap up DOE deliverables this year.

#### **Partners**

- Frontier Energy
- UT Austin
- ☐ GTI
- Air Liquide
- Centerpoint
- Chart Ind.
- Chevron
- ConocoPhillips
- Hitachi Energy

- ☐ LCRI
- ■McDermott
- Mitsubishi Heavy Industries
- ONEGas
- ONEOK
- Shell
- SoCal Gas
- TCEQ
- Toyota
- Waste Management

# H2@Scale Hydrogen R&D Facility — also known as the "ProtoHub"

First-of-its-kind hydrogen R&D facility with multiple forms of hydrogen generation and use cases

Scheduled to wrap up the DOE project in July 2025

Future work and vision is to be a training site and proving ground for new H2 technologies



## Demonstration activities at UT

## ~100% renewable H<sub>2</sub> generation

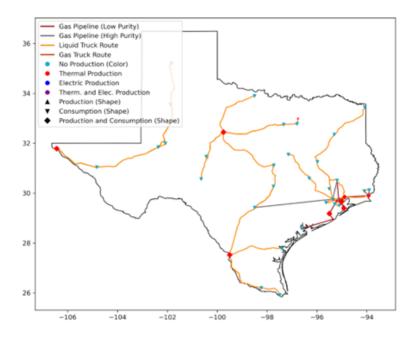
- 30-80 kg/day Steam Methane Reformation using Renewable Natural Gas
- 40 kg/day PEM electrolyzers using wind and solar power profiles

## Large scale, industry H<sub>2</sub> user

100kW fuel cell powering Texas Advanced Computing Center

## Vehicle refueling

- 350 bar and 700 bar fueling
- Published SAE J2601-4 fueling of 3 Toyota Mirai's (1 public Hyundai Nexo)

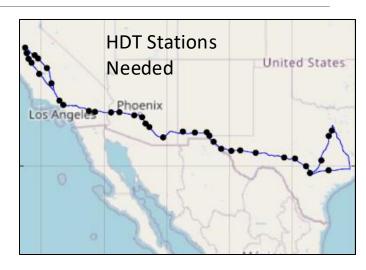

# Understanding Hydrogen Infrastructure and Deployment

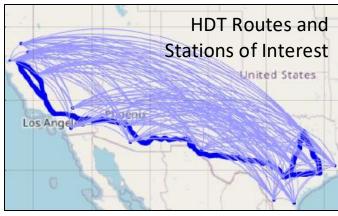
Infrastructure remains a challenge. Understanding where to deploy hydrogen production and how to deliver it to markets is critical.

## Hydrogen Optimization with Deployment of Infrastructure (HOwDI) model

- The University of Texas at Austin H2@UT researchers have developed a general framework for modeling the supply, distribution, and demand of hydrogen among various economic sectors
- User specifies locations and costs
- Model determines production sites, delivery methods, and levelized cost of hydrogen

# A single run of HOwDI model determines cost-optimal hydrogen infrastructure across Texas





Sample outputs of model – spatially resolved hydrogen production and distribution infrastructure

# Houston to Los Angeles (H2LA) I-10 Hydrogen Corridor Project

Develop a flexible and scalable blueprint plan for an investment-ready hydrogen fueling and heavy-duty freight truck network from Houston to LA (H2LA) along I-10, including the Texas Triangle region







# Hydrogen Research Outlook

Develop H2 ProtoHub into a Training and Education facility

 Engineering students, skills and trades, regulatory officials and AHJs, first responders, legislators, communities



Set the stage for the H2 ProtoHub to serve as a "proving ground" for emerging hydrogen technologies

- Generation, storage, transport, or end use
- Hydrogen blending applications on the research campus
- Hydrogen emissions testing
- eFuels and ammonia



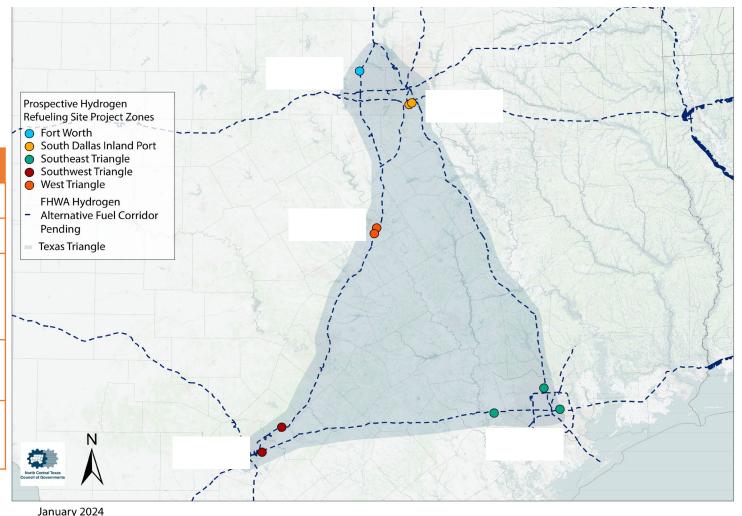






# TIA Deep Dive NCTCOG CFI Corridor Award

Jared Wright, Senior Air Quality Planner
July 9, 2025


# **CFI Corridor Project Overview**

\$70 million award to construct up to 5 medium-/heavy-duty hydrogen refueling stations

### ~\$31 million currently obligated

| Zone 1                                         | City of Fort Worth (1)                                  |
|------------------------------------------------|---------------------------------------------------------|
| Zone 2                                         | City of Dallas (2)                                      |
| Zone 3*<br>(Houston-Galveston<br>Area Council) | City of Brookshire (1) or<br>City of Houston (2)        |
| Zone 4* (Alamo Area<br>MPO, Alamo Area COG)    | City of San Antonio (1) or<br>City of New Braunfels (1) |
| Zone 5*<br>(Waco MPO)                          | City of Waco (1) or<br>City of Robinson (1)             |

**Potential Hydrogen Fueling Site Locations** (Will Select 5 of 10 "Short-Listed" Existing Sites)





## March-April 2023

NCTCOG administered Call for Partners to secure private sector partners ahead of developing proposal

## January 2024

FHWA announced award selection

### December 2024

NCTCOG signed agreement with FHWA and received obligation of \$31M

### February 2023

FHWA released \$350 million opportunity to build alternative fuel infrastructure along highway corridors

### May 2023

NCTCOG submitted application to FHWA CFI Corridor Program

# Award Timeline

## September 2024

Received National Environmental Policy Act (NEPA) Categorical Exclusion for all locations and approval of Transportation Improvement Program (TIP) listings for two locations

#### June 2025

NCTCOG executed agreement with station developer



# **Next Steps**

Final project locations within each zone selected by fall 2025

### Coordinating with local governments in potential project areas

 Project needs to be reflected in Metropolitan Planning Organization (MPO) Regional Transportation Plan (RTP) and TIP to obligate remaining funding

## Conducting outreach and engagement for the planned infrastructure

- Ensure local fleets are aware of the upcoming infrastructure
  - Complementary opportunities such as NCTCOG's EPA Clean Heavy-Duty Vehicle Award
- Host public engagement events for communities in project areas
- Ensure first responders are aware and educated on the project



Sites will have staggered construction, with first site beginning in 2027 and operational in 2028



## Contact Us



Lori Clark Senior Program Manager & DFWCC Director Iclark@nctcog.org



Jared Wright Senior Air Quality Planner jwright@nctcog.org









cleancities@nctcog.org





linkedin.com/dfwcleancities/

